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Abstract

The spin 0 generalized phase space approach provides a general expression
for local current which depends on the choice of the distribution function and
generally deviates from the Schrödinger current. It is shown that the continuity
equation restricts the admissible bilinear distributions such that the current has a
unique dependence on the wavefunction and coincides with the non-relativistic
limit of the relativistic spin 1

2 current for a spin eigenstate, up to a constant
vector. Examples of non-bilinear distributions that have the latter property are
given.

PACS numbers: 03.65.Ca, 03.65.Ta

1. Introduction

It is well known that the current implied by the Schrödinger equation is not unique, being
defined only up to a divergence-free addition. Some purchase on this problem was gained by
the observation that a unique expression for the 4-current of a spin 1

2 particle is enforced by
Lorentz covariance [1]. In the non-relativistic limit, and assuming a spin eigenstate and no
external magnetic field, the resulting expressions for the density and 3-current are

ρ = ψ∗ψ, ji = h̄

2m i

(
ψ∗ ∂ψ

∂qi

− ∂ψ∗

∂qi

ψ

)
+

h̄

2m
εijk

∂ρ

∂qj

ak, i, j, k = 1, 2, 3, (1.1)

where ψ obeys the spin 0 Schrödinger equation and (h̄/2)ai is the spin vector, ai being a
constant unit vector. Thus, even though it plays no role in the dynamics, the current contains
a contribution from the spin (the ‘spin current’) in addition to the usual expression quoted
for the current implied by the Schrödinger equation. Some implications of the modified
expression (1.1) have been explored [2–4].

The question raised here is whether there is an explanation for the additional term and
its uniqueness already in non-relativistic spin 0 theory, without going to relativity or directly
invoking spin. That there may be such an anticipation follows since, of the infinite number
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of divergence-free vectors we may add to the Schrödinger current, the spin current is clearly
one, the only feature foreign to the Schrödinger equation being the direction ai . To gain an
alternative perspective, we examine this question within the generalized (quasi-)distribution
approach in which Hilbert space operators are replaced by phase space c-numbers, the
correspondence being characterized by the choice of the distribution function. The value
of this formalism in the present context is that it provides a formula to generate the set of all
local currents, each distinguished by the distribution. The condition that the current obeys
the continuity equation in accordance with the conservation of ρ restricts the distribution
functions; we call these ‘admissible’. It turns out that for the admissible distribution functions
that are bilinear combinations of the wavefunction the current uniquely implied by this method
is just (1.1) with ai in the spin term replaced by an arbitrary constant vector (the spin term in
this case will be called ‘spin-like’). This class of functions, which apparently has not been
considered previously, extends to some non-bilinear distributions and the relevant distributions
need not have the quantal momentum density as a marginal. The current obtained uniquely as
a residue of relativistic spin 1

2 theory is therefore also obtained, up to a constant vector, from
a quite different starting point in non-relativistic spin 0 theory.

2. Spin-like current from bilinear distributions

A general expression for the phase space distribution that yields the quantal position and
momentum densities as marginals is given by [5]

F(q, p) = (1/2π)6
∫

exp[−iτipi + i θi(ui − qi)]f (θ, τ )

×ψ∗
(

u − 1

2
h̄τ

)
ψ

(
u +

1

2
h̄τ

)
du dτ dθ, (2.1)

where

f (θ, 0) = 1, (2.2a)

f (0, τ ) = 1. (2.2b)

The condition (2.2a(b)) ensures that the position (momentum) distribution is obtained by
integration over momentum (position). We always require (2.2a) but (2.2b) is not essential in
our considerations and relaxing it yields an even wider class of distributions. The distribution
is characterized by the kernel f (θ, τ ) (for examples, see [6, 7]) which may depend on ψ

and so this set of functions goes considerably beyond the bilinear distributions of which the
Wigner function is the most famous example. The latter is obtained when f (θ, τ ) = 1:

W(q, p) = (1/2π)3
∫

exp(−iτipi)ψ
∗
(

q − 1

2
h̄τ

)
ψ

(
q +

1

2
h̄τ

)
dτ. (2.3)

Insight into the expression (2.1) may be obtained by noting that it can be written as a smeared
Wigner function [8]:

F(q, p) =
∫

g(q − q ′, p − p′)W(q ′, p′) dq ′ dp′, (2.4)

where

g(q, p) = (1/2π)6
∫

exp[−iτipi − iθiqi]f (θ, τ ) dτ dθ. (2.5)

It was suggested by Cohen [9] that one can generate all possible expressions for the local
kinetic energy by adopting the classical expression for the mean energy using the phase space
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function (2.1) as a weight. Here we employ a similar approach to obtain all local currents.
Thus, defining

ji(q) = (1/m)

∫
piF (q, p) dp, (2.6)

we obtain from (2.1)

ji = h̄

2m i

(
ψ∗ ∂ψ

∂qi

− ∂ψ∗

∂qi

ψ

)

− i

m

(
1

2π

)3 ∫
exp[iθj (uj − qj )]

∂f (θ, τ )

∂τi

∣∣∣∣
τ=0

ρ(u) du dθ, (2.7)

where (2.2a) (and not (2.2b)) has been used. We therefore deduce the usual Schrödinger
current and an additional term characterized by the choice of f . This expression reduces to
the Schrödinger current when

∂f (θ, τ )

∂τi

∣∣∣∣
τ=0

= 0, (2.8)

a condition obeyed by an infinite class of kernels [10]. We are interested in the general case
where the kernel does not satisfy (2.8) and consider the following three constraints:

(a) In order that the total current corresponds to the density ρ, the continuity equation implies
that the added term must be divergence-free:∫

θi exp[iθj (uj − qj )]
∂f (θ, τ )

∂τi

∣∣∣∣
τ=0

ρ(u) du dθ = 0. (2.9)

This condition, which must hold for all ψ , supplies a restriction on the admissible f s that
apparently has not been considered before (and provides an additional criterion against
which to judge the various choices made for f in the literature).

(b) We require that the current is real. From (2.6) this follows if F is real which is guaranteed
when f ∗ (θ, τ ) = f (−θ,−τ ) [5].

(c) Although not essential to our analysis, it is usual to require that the mean momentum
implied by the current equals the quantum expression. We have for (2.7)

m

∫
ji(q) dq = 〈p̂i〉 − i

∂f (0, τ )

∂τi

∣∣∣∣
τ=0

, (2.10)

and hence the desired equality is obtained when the f -term on the right-hand side vanishes.
This requirement is satisfied in all the examples we give below; (2.2b) is sufficient to
achieve it but, as we shall see, not necessary.

Restricting to bilinear distributions, so that f is independent of ψ , (2.9) entails

θi

∂f (θ, τ )

∂τi

∣∣∣∣
τ=0

= 0, (2.11)

and hence
∂f (θ, τ )

∂τi

∣∣∣∣
τ=0

= 1

2
h̄εijkθj bk, (2.12)

where bi is a real constant dimensionless vector of arbitrary length. Writing bi = λa′
i , where

λ = const. and a′
i is a unit vector, insertion in (2.7) yields

ji = h̄

2m i

(
ψ∗ ∂ψ

∂qi

− ∂ψ∗

∂qi

ψ

)
+

λh̄

2m
εijk

∂ρ

∂qj

a′
k. (2.13)
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We thus obtain, for all admissible bilinear distributions, just the expression for the current
given in (1.1), up to the constants λ and a′

i ; varying these parameters generates an infinite set of
currents with a ‘spin-like’ component. As special cases the set includes (1.1) (λ = 1, a′

i = ai)
and (2.8) (λ = 0).

None of the popular choices for f (as listed in [6, 7]) obey (2.12) except for a subset for
which λ = 0. For example, for the Kirkwood distribution (f = exp(i h̄τiθi/2)) the f -term
in (2.7) is (i h̄/2m)∂ρ/∂qi and hence the current is neither real nor conserved (the formalism
nevertheless implies the conservation of ρ since the imaginary term cancels with another term
in the dynamical equation). An example of a suitable kernel that satisfies (2.2) and implies
(2.12) is the function

f (θ, τ ) = exp
(

1
2h̄εijkτiθj bk

)
. (2.14)

However, this function satisfies the conditions assumed in deriving (2.7) through partial
integration only for a subset of wavefunctions. To circumvent this restriction we may introduce
a Gaussian factor

f (θ, τ ) = exp
(− 1

2h̄
2τiτiθj θj

)
exp

(
1
2h̄εijkτiθj bk

)
. (2.15)

A more general option, prompted by an example given by Cohen [5], employs an arbitrary
normalized function φ:

f (θ, τ ) =
∫

φ

(
qi − 1

2
ikh̄εikj τkθj

)
φ∗

(
qi +

1

2
ikh̄εikj τkθj

)
dq, (2.16)

where k is a real constant with the dimension of length. In this case (2.2) is again obeyed and

∂f (θ, τ )

∂τi

∣∣∣∣
τ=0

= −ikh̄εijkθj

∫
φ∗(q)

∂φ(q)

∂qk

dq. (2.17)

The integral factor in (2.17) is pure imaginary and we choose the parameter dependence of φ

so that this factor equals ibk/2k. Then we obtain (2.13). As an example, we may choose φ to
be a Gaussian,

φ (q) = (
2πσ 2

0

)−3/4
exp

(−q2/4σ 2
0

)
exp(ibiqi/2k), (2.18)

for which (2.16) reduces to (2.14).
The examples given so far satisfy (2.2b). An example of a bilinear distribution that gives

(2.12) but violates this condition is given by

f (θ, τ ) = exp
(− 1

2ch̄2τiτi

)
exp

(
1
2h̄εijkτiθj bk

)
, c = const. (2.19)

3. Non-bilinear distributions

When f depends on ψ, generally no constraint more specific than (2.9) may be stated. We
shall show that there are nevertheless kernels within this set that obey (2.12), with (2.2b) valid
or not, and hence the spin-like term follows in these cases as well.

As an example of a non-bilinear distribution that obeys (2.2b), we may consider a free
system and the kernel (2.16) where φ = ψ , a time-dependent Gaussian.

An example of a useful non-bilinear distribution for which (2.2b) is violated (and which
moreover is non-negative) is the following:

F(q, p) = ρ(q)δ
(
pi − ∂S/∂qi − 1

2h̄εijk(∂ log ρ/∂qj )bk

)
, (3.1)

where S is the phase of ψ . The kernel that generates this distribution is given by

f (θ, τ ) =
∫

ρ(q) exp
{
iτi

[
∂S

/
∂qi + 1

2h̄εijk(∂ log ρ/∂qj )bk

]
+ iθiqi

}
dq∫

exp(iθiui)ψ∗(u − 1
2h̄τ

)
ψ

(
u + 1

2h̄τ
)

du
. (3.2)
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The function (3.1) characterizes a generalization of the de Broglie–Bohm phase space (for
which λ = 0 [11]).

4. Conclusion

We have examined the role of the phase space approach to non-relativistic quantum mechanics
in determining the conserved current associated with the Schrödinger equation. Given the
formula (2.6), and for bilinear distribution functions, the dependence of the current on
the wavefunction is fixed uniquely, the only freedom being the constant vector bi . An
unexpected result is that this spin 0 current simulates the appearance of spin since, apart from
a possible deviation of bi from the spin vector (h̄/2)ai , it coincides with the current determined
uniquely from relativistic considerations. A similar result is obtained for some non-bilinear
distributions. It is not clear from the present analysis whether the identity of currents is a
coincidence or has a deeper significance.

One of the striking features of (1.1) is that it exhibits ‘kinematic interdependence’, that
is, when ψ factorizes in orthogonal directions the current components are generally coupled
[2] (the spin term defines a two-dimensional phase space flow where the Hamiltonian is
proportional to log ρ). In contrast to the Wigner function (2.3), for example, which factorizes
in this case, the generalized distributions for which λ �= 0 represent the interdependence in
that they generally do not factorize. This suggests that choosing a distribution function in
order to achieve a particular marginal current is an important consideration when formulating
a phase space theory. This choice will influence the correspondence rule and local quantities
other than current. For example, the expressions for local kinetic energy obtained in our case
differ from those studied in [9]. In the case of the kernel (2.14) we obtain

K(q) = (1/2m)

∫
p2F(q, p) dp

= −(h̄2/8m)(ψ∗∇2ψ + ψ∇2ψ∗ − 2∇ψ∗ · ∇ψ)

+ (i h̄2/2m)(∇ψ∗ × ∇ψ) · b + (h̄2/8m)(b × ∇)2ρ. (4.1)

Evidently, this choice obeys the required condition
∫
K dq = 〈p̂2/2m〉 (the proof requires

(2.2a) but not (2.2b)). Following the approach of this paper, a further point to consider in
assessing admissible expressions for the local kinetic energy is the latter’s potential contribution
to an energy conservation equation.
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